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Abstract—Multipliers play an essential role in various data
processing applications and have garnered significant attention in
approximate computing (AxC) for their energy-efficient features.
However, formulating a precise error model for approximate
data processing algorithms in conjunction with hardware metrics
presents a challenge, leading to substantial time consumption in
the design space exploration. This paper introduces an analyti-
cal model for approximate multipliers while considering input
patterns. This model furnishes accurate error metrics, along
with high-precision hardware metrics for various approximate
multiplier configurations, impervious to variations in input data
distribution. The proposed error model reduces the runtime
by an average factor of 120.85 and, in some instances, by as
much as 2,500 times, when contrasted with simulation-based
methods. The design space exploration is performed on a 3×3
convolution circuit, revealing a comparable Pareto-optimal set
and substantial reductions of up to 79.46% in the Power-
Delay-Product (PDP) and 71.98% in area compared to the
accurate counterpart. Additionally, the result of the Gaussian
Blur application experiment demonstrates a 68.59% reduction
in PDP and a 56.21% reduction in area, all while maintaining a
PSNR of 30 dB.

Index Terms—Approximate multipliers, Analytical error mod-
eling, Design space exploration

I. INTRODUCTION

Approximate computing technology, relying on a mature
CMOS manufacturing process, has been proven to be a prac-
tical approach to improving energy efficiency for fault-tolerant
applications such as artificial intelligence and computer vision.
As a fundamental computational element, the multiplier is
widely utilized in computationally intensive applications and
contributes significantly to VLSI circuits’ power and area
consumption. Consequently, recent years have witnessed a
proliferation of research works dedicated to the development
of approximate multipliers aimed at substantial reductions in
power consumption and silicon footprint across diverse design
contexts [1]–[4].

Therefore, in the pursuit of identifying the most suitable
approximate multiplier for a specific application among the
various available design alternatives, the presence of a com-
prehensive model encompassing both accuracy metrics and
hardware metrics holds significant importance in Electronics
Design Automation (EDA). While the commonly employed
Monte Carlo simulation technique has gained widespread
acceptance, it presents certain challenges when determining

the optimal number of iterations due to the inherently pseudo-
random nature of computer-generated random numbers. Ad-
ditionally, this technique fails to account for the intricate
relationship between error and input distribution, as well as the
various modes of approximation that could provide valuable
insights for making hardware design decisions.

Conversely, the exhaustive approach, which involves consid-
ering every conceivable input case, is only feasible for small-
scale circuits, as its execution time experiences exponential
growth with increasing input bit-width. To address these
formidable challenges, the research community has introduced
various analytical or semi-analytical error models in recent
years. However, these models often exhibit specialization for
specific applications or are burdened by computationally inten-
sive requirements, rendering them less practical for integration
into the actual hardware design process. Moreover, formal
methods and Bayesian network models are employed for the
assessment of the quality of approximate circuits within a rea-
sonable time frame. It should be noted that formal methods ne-
cessitate more specialized input representations in comparison
to high-level descriptions, as opposed to analytical methods.
Conversely, the Bayesian network model is constrained by
several error metrics.

This paper presents a precise input-aware analytical method
to address the prevailing issue. This method offers the flex-
ibility to extend its application for modeling approximation
errors arising from partial product generation, compression,
and accumulation. Moreover, it capitalizes on the one-to-
many relationships that exist between various relevant partial
products and input combinations to derive precise metrics,
thereby yielding a significant reduction in computational run-
time compared to conventional simulation-based methods. The
proposed model is employed in the context of design space
exploration for a 3×3 convolution circuit to demonstrate its
viability and effectiveness. Quality assessment is performed
by replacing the conventional Monte Carlo simulation with the
analytical error model. To avoid excessive computational time,
the design space is pruned using the Monte Carlo Tree Search
(MCTS) technique. In addition, the hardware metrics such as
circuit area, power consumption and latency are also estimated.
As a result, the optimal design selection from the Pareto set,
guided by the proposed error model, yields an impressive
79.46% reduction in Power-Delay-Product (PDP) and 71.98%
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Fig. 1: Demo of an approximate multiplier with 8-bit inputs,
using 1-bit input-truncation, 3-bit partial-product-truncation
and compensation and approximate compressors.

reduction in area compared to its accurate counterpart when
MSE is constrained to 1 × 107. Additionally, it achieves a
similar Pareto-optimal set compared to that using the Monte
Carlo simulation, with a tenfold decrease in running time.
The proposed method is also applied to Gaussian Blur, using
a constant coefficient multiplier compared to the previous
method. When constraining the accuracy to 30 dB, 68.59%
of the PDP and 56.21% of the area are reduced compared to
the exact replica, indicating a favorable trade-off.

II. PROPOSED COMPREHENSIVE MODEL FOR
APPROXIMATE MULTIPLIERS

In this section, the proposed analytical input-aware model
of configurable approximate multipliers, including error and
hardware metrics, is presented in detail. The model is mainly
applicable to the deliberately designed approximate multiplier,
which is divided into partial product generation, partial product
compression and final accumulation to approximate. The ap-
proximate methods comprise approximate Booth encoding and
decoding [2], input truncation and compensation [5], partial
product truncation and compensation [1], and approximate
compressors [3], which are configurable parameters of the
model. Fig. 1a shows a typical representation of this kind
of multiplier. In design space exploration, the range and
diversity of errors generated by approximate multipliers are
more important than the method of approximation itself. For
other types of multiplier [6], only one traversal is needed to
obtain the error metrics corresponding to any input distribu-
tion. In certain scenarios, the specific characteristics of the
input distribution for the multiplier may either be unknown
or exhibit substantial variations across different use cases.
A uniform distribution assumption is considered during the
design phase for this situation. As such, an explicit error
model for uniform input distributions is introduced, offering
enhanced computational speed with full accuracy.

A. Proposed Model for Accuracy Metrics

1) MED: Mean Error Distance. In conventional error
calculation procedures, large amounts of multiply-accumulate
are used, which means a significant amount of runtime in
software implementation. Consider a multiplier using it-bit
input-truncation with two N-bit operands, A and B, and their
exact output E = A × B. To improve clarity, A is divided
into the truncated part A0 and the remaining part A21, having
A = A212

it +A0, and so do B. The error distance (ED) can
be written in

ED = E −A212
it ×B212

it

= 2it × (A21B0 +B21A0) +A0B0,
(1)

so MED is

MED =

Edit−1∑
a21=−Edit

Edit−1∑
b21=−Edit

2it−1∑
a0=0

2it−1∑
b0=0

(
2it × (a21b0 + b21a0)

+a0b0)× papb

Edit = 2N−it−1,
(2)

where pa is the probability of A to be a and so do pb. Input-
aware is achieved by using the probability of each input case
instead of that of a single bit, which effectively avoids errors
caused by bit-to-bit correlation (except when the inputs adhere
to a uniform distribution). Since the inputs are independent of
each other, the equation can be modified into

MED =2it ×

 Edit−1∑
a21=−Edit

a21 × pa21

2it−1∑
b0=0

b0 × pb0

+

Edit−1∑
b21=−Edit

b21 × pb21

2it−1∑
a0=0

a0 × pa0


+

2it−1∑
a0=0

a0 × pa0

2it−1∑
b0=0

b0 × pb0

pa21
=P (A21 = a21) =

2it−1∑
a0=0

P (A = a212
it + a0)

pa0 =P (A0 = a0) =

Edit−1∑
a21=−Edit

P (A = a212
it + a0),

(3)
as the treatment of B is the same as that of A, it will not be
reiterated here and will be maintained consistently throughout.
Time is greatly reduced due to the reduction in loop iterations
from 4 to 1. For uniform distribution, the equation can be
further simplified into

pa21 = 2it−N , pa0 = 2−it. (4)

By separating the constant probability from the loop, the
summation equation is applied, eliminating the loop entirely.

Considering other approximate methods concerning partial
products, such as partial product truncation, which depends on
both inputs, a new paradigm needs to be proposed to compute



metrics quickly and accurately. Regarding this part, we focus
on the partial products processed approximately, avoiding
time-consuming exhaustion. Taking fig. 1a as an example,
where four columns of partial products are approximated,
the corresponding error only relates to the 4 least significant
bits (LSBs) of both inputs after input-truncation, resulting in
28 considered combinations rather than 216. In other words,
the ED is the same regardless of the other 4 bits when the
1 ∼ 4th LSBs of the input are fixed. Therefore, it is sufficient
to consider only one of these cases. Furthermore, it is evident
from fig. 1b that only the high n bits of the four LSBs of A
are relevant to the first n rows of partial products, as indicated
in the colored box. However, if the n LSBs of B are all
zero, the first n rows of partial products are also zero and
cut the connection to the relevant high n bits of A, as shown
in Fig. 1c. We have n + k = 4 here. To reduce the number
of cases to be considered, classification is done based on the
value of k (0 < k ≤ 4, where all partial products are zero
when k is 0). To clearly categorize, set the nth LSB of B to
1, while the lower bits are all 0. This classification reduces
the number of cases to be considered from 256 to 170. The
relevant EDs are calculated according to the input situations
and pre-stored in a Look-up Table (LUT) and represented by
edyx, where x and y are index values and the use case is shown
in II-A3. Hence, the proposed method can be expanded to
any approximate methods related to partial products including
approximate Booth coder/decoder, approximate compressors,
approximate accumulation, etc.

For an approximate design using combinatorial methods,
MED can be calculated separately and finally summed.

2) MRED: Mean Relative Error Distance. With a division
added to MED, the computational complexity of MRED is
improved. Taking the design with input-truncation and partial-
product-truncation for example, having

RED =
EDit

E
+

EDt

E
, (5)

where EDit and EDt are EDs caused by input-truncation and
partial-product-truncation. When E = 0, we add ED instead
of RED, which will not be discussed here. Focusing on the
MRED caused by input-truncation, namely MREDit:

MREDit =

Edit−1∑
a21=−Edit

Edit−1∑
b21=−Edit

2it−1∑
a0=0

2it−1∑
b0=0

(1

− a21b212
2it

(a212it + a0) (b212it + b0)

)
× papb

= 1−
Edit−1∑

a21=−Edit
a21 ̸=0

2it−1∑
a0=0

pa(
1 + a0

a212it

)
×

Edit−1∑
b21=−Edit

b21 ̸=0

2it−1∑
b0=0

pb(
1 + b0

b212it

)

(6)

The equation is presented in 1’s complement for simplicity.
When it comes to MREDt, a simplification is performed,
which reduces the fourfold cycle to two or three.

3) MAED: Mean Absolute Error Distance. Different from
MED and MRED, the error caused by different methods
cannot be calculated separately with no special treatment
during the calculation of MAED. Therefore, the error dis-
tance is separated into positive and negative ones, targeting
different combinations of approximate means. Considering an
approximate design using input-truncation and partial-product-
truncation, it can be figured out by

AED =
∣∣EDit + EDt

∣∣ (7)

As EDt is always non-negative due to sign bit handling
in partial product generation and EDit can be positive or
negative, both should be taken into account. When both inputs
are positive, EDit is positive too. Therefore, we can divide
MAED into two parts, MAED+ and MAED±. The first
part can be worked out easily as MED. The remaining part
can be further written as

MAED± =

t∑
k=1

2k−1−1∑
m=0

2k−1∑
a1=0

2it−1∑
a0=0

2it−1∑
b0=0

MAED

MAED =

Edit+t−1∑
b2=−Edit+t

Edit+k−1∑
a2=−Edit+k

| 2it × (a21b0 + b21a0)

+a0b0 + 22it × edma1
| ×papb

b1 = m2t−k+1 + 2t−k

a21 = a22
k + a1, b21 = b22

t + b1

Edit+t = 2N−it−t−1, Edit+k = 2N−it−k−1,
(8)

where a21 is separated into a2 and a1 for the sake of establish-
ing contact with EDt, so do b21. MAED is an intermediate
variable and the situation where both A and B are positive
needs to be eliminated, which is omitted here for simplicity.
The (t− k)th bit of b1 is always 1 in each category, resulting
in 2k−1 possibilities. As the sign of each error result must be
judged before calculation, at most one cycle can be eliminated
in software by figuring out the positive and negative critical
value due to monotonicity. The more iterations of the untied
loop, the greater the payoff. Therefore, A2 is chosen. The
critical value comes from

2it
((
A22

k +A1

)
×B0 +B21A0

)
+A0B0 + 22itedmA1

> 0
(9)

After the absolute value is removed, it is treated in the same
way as MED.

4) RMSed: Root Mean Square of error distance. To break
down the terms, the square should be expanded in the equation.
Similarly, a design using input-truncation and partial-product-
truncation is taken as an example. The squared error is:

SED = (EDit + EDt)2

= EDit2 + EDt2 + 2× EDit × EDt
(10)



After expanding the first term, which is a square of eq. (1),
it is clear that it contains a factor A21A0B0

2. Taking it as an
example:

Edit−1∑
a21=−Edit

Edit−1∑
b21=−Edit

2it−1∑
a0=0

2it−1∑
b0=0

a21a0b0
2 × papb

=

Edit−1∑
a21=−Edit

2it−1∑
a0=0

a21a0 × pa

2it−1∑
b0=0

b0
2 × pb0

(11)

The quadratic sum equation is used here to avoid the cycle.
When it comes to the last term of eq. (10), separating the loop
related to EDt first, and the rest can be treated in the same
way as MED.

Since V ared (Variance of error distance) can be derived
from MED and RMSed easily, it will not be explained here.

B. Proposed Model for Hardware Estimation of Approximate
Multipliers

Within the context of design space exploration, the com-
prehensive evaluation of hardware parameters such as area,
power consumption, and delay, alongside the accuracy of the
design, holds paramount importance. This paper introduces a
specialized hardware analytical model tailored to a specific
multiplier, with the primary objective of mitigating time-
related expenses.

1) Modelling for Circuit Area: The modeling of the area in
this study employs partition counting due to the multiplier’s
composition of distinct modules with varying partitions and
substantial reuse. Similar to the error model, the approximate
multiplier is divided into three primary components: partial
product generation, compression, and final accumulation. In
the initial stage of partial product generation, the determination
of the number of partial products to be generated relies on fac-
tors such as the input-truncation and partial-product-truncation
bit counts. Accurate categorization of partial products neces-
sitates consideration of factors such as the chosen algorithm,
the spatial placement of partial products, and the potential
application of compensation techniques. These factors collec-
tively influence the spatial requirements of the partial product
generation circuit. Moving to the compression stage, the
accurate assessment of the requisite number of compressors
for each type is feasible, given the consistent utilization of
the same compression algorithm. In the accumulation stage,
the calculation of the necessary quantities of half adders and
full adders hinges on the characteristics of the last two partial
products and whether truncated partial product compensation
is incorporated into the design. The combinational area of an
array multiplier can be represented as:

Acom = CppgAppg + CppcAc + CaAa, (12)

where Acom is the combinational area, Cppg is the count
of partial product generation circuits, Appg is the area of
that, Cppc is the count of partial product compressors, Ac

is the area of compressors, Ca is the count of accumulation
bits, Aa is the area of adders. Here, Appg is the area of

an AND-gate. The paper proposes an algorithm that focuses
on counting the number of individual basic constructs. The
range of applications for the basic constructs can be expanded
by adjusting them based on technology, approximate Booth
encoding algorithm, and approximate compressor.

2) Modelling for Power Consumption: The research de-
scribed in reference [7] showcases a strong correlation coeffi-
cient of 1 between the power consumption and the area of spe-
cific multiplier designs. Consequently, a statistical approach is
employed to estimate power consumption based on the derived
area values. A set of representative approximate multipliers is
chosen for hardware description, followed by the synthesis
process. Therefore, the curve fitting is performed to elucidate
the relationship between power consumption and the area
of these approximate multipliers. Notably, this relationship
is separately modeled and fitted for combinational circuits,
sequential circuits, and distinct coding algorithms due to their
notable distinctions. The empirical data highlights a linear
association between power consumption and the corresponding
area for these designs. For example, the combination power
consumption of an array multiplier is:

Pcom = 0.0001768Acom − 0.004179, (13)

where Pcom is the power of combinational circuit respectively.
3) Modelling for Latency: To characterize the delay char-

acteristics of the multiplier, it is necessary to partition it into
three sequential stages, while also identifying the area and the
longest propagation path within each stage. Additionally, it is
imperative to determine the requisite number of compression
steps for the partial product compression stage. In the final
accumulation stage, it is important to note that counting should
not initiate from the least significant bit. This is due to
the presence of a non-rectangular array structure, where the
compression of lower-order bits may conclude ahead of others.
Moreover, it is crucial to consider that the counting result ob-
tained during the partial product compression step is multiplied
by the cumulative delay associated with the corresponding
compressor. In contrast, the delay in the final accumulation
stage must be scaled by the carry delay introduced by the
half-adder or the full-adder. Taking an array multiplier as an
example, the combinational delay is:

Tcom = Tppg + CppctTc s + CacTa c, (14)

where Tcom is the combinational delay, Tppg is the delay of
partial product generation, Cppct is the count of partial product
compression stages, Tc s is the sum delay of compressors, Cac

is the count of accumulation bits done after the completion of
compression, Ta c is the carry delay of adders. Here, Tppg is
the delay of an AND-gate.

III. EVALUATION AND ANALYSIS

To evaluate the performance and quality of the proposed
model, several approximate multipliers are assessed using
both analytical and Monte Carlo simulation methods, some
of which also use exhaustive simulation, along with synthesis.
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Fig. 2: Hardware evaluation using 25 representative multipliers
for area, delay, power consumption and PDP.

The proposed model is implemented in Python on a com-
puter with the following configurations: Intel(R) Core(TM) i7-
8700 CPU, at 3.20 GHz, with 6 cores, 12 threads, 16GB RAM.
To evaluate the hardware model, the selected approximate
multipliers are described in Verilog HDL and synthesized
using Synopsys’ Design Compiler tool at 28nm technology.

A. Evaluation on Model Precision

1) Accuracy Model: Since software-implemented Monte
Carlo simulation uses pseudo-random numbers as inputs and
it is difficult to evaluate its accuracy, exhaustive simulation
is used as the benchmark. Three representative approximate
multipliers are selected to validate the model’s accuracy and
performance. The accuracy and runtime of the deduced four er-
ror metrics are shown in Table. I. As V arED is introduced by
the other two metrics, it will not be analyzed here separately.
Note that the experiments use uniform and Gaussian distribu-
tions for descriptive purposes only. The model proposed can
be applied to cases with arbitrary input distributions.

The Table. I reveals that the model’s error magnitude is
exceptionally small, on the order of 10−13 or even smaller. It
is crucial to emphasize that this minute error primarily stems
from limitations in Python’s computational precision rather
than computational inaccuracies, thereby affirming the high
precision of the error model. Notably, an observable trend
in the operational time becomes evident as the multiplier
bit-width increases. Specifically, the proposed model exhibits
a consistent and linear increase in execution time, while
the exhaustive simulation experiences a marked exponential
growth. Comparing the three different multipliers presented,
the model’s computational speed demonstrates the potential to
exceed that of the exhaustive simulation by a factor of 3000
or more for inputs with specific distributions. In the case of
uniform distribution inputs, the model’s efficiency can surge
to be as much as 20000 times faster or even greater, thanks
to the additional optimization incorporated within the model.

2) Hardware Model: To evaluate the hardware model, 25
representative multipliers are selected for hardware description

and synthesis. The outcomes and those obtained using the
analytical model are shown in fig. 2. The accuracy of the area
modeling is evident, with a MRED of -0.055‰, and 23 out
of 25 multipliers are exact. This is because the counting of
the individual components of the approximate multiplier is
completely accurate and the area is simple compared to the
power and delay algorithms, which are less affected by fan-in
and fan-out. Additionally, the area of the same components
remains constant. As power consumption is determined by
the area and has a strong correlation with it, the power
consumption model is highly accurate, with a mean value
of -0.28‰ and a maximum absolute RED of no more than
1.9%. The delay error primarily arises from the fact that
reused parts within the same multiplier may have varying
delays due to the effect of different fan-in and fan-out. This
becomes particularly evident when the parts are complex and
their number increases. The delayed MRED is -3.18% and the
absolute RED is no more than 10%. As PDP is derived from
power consumption and delay, its error is mainly caused by
delay, with a MRED of 3.2% and a maximum of 10.5%. The
error in the application algorithm is acceptable because the
result is only used as a reference for iteration, and the final
pareto set passes synthesis verification.

B. Evaluation on Model Performance

Since exhaustive simulation can be incredibly time-
consuming, particularly for large bit-width, Monte Carlo simu-
lation methods are typically preferred when analytical methods
are not available. Therefore, to demonstrate the superiority
of the proposed model, a comparison with Monte Carlo
simulations will be conducted.

To demonstrate the general performance of the proposed
model, the simulation time and accuracy are averaged for
designs. The number of designs corresponding to the bit-width
is 14, 28, and 35 for 8bit, 9bit or 10bit, and 12bit or 16bit
separately, covering all kinds of configurable approximate
multipliers. The approximate bit-width is 7, equal to the sum
of input-truncation, partial-product-truncation, and bit-width
using approximate compressors.

The evaluation results are shown in Fig. 3a to Fig. 3d.
MRED is used as an error metric for the Monte Carlo
simulation method. Also, the logarithm of the ratio of the
runtime for the Monte Carlo simulation and the error model is
done to make it clear. The multiplier bit-width for all metrics
are 8, 12, and 16 except for MAED, which uses 8, 9, and
10 due to the long simulation time. The figure also shows the
time ratios between different bit-width multipliers when the
number of Monte Carlo simulations is 5000, which is due to
the fact that in most cases the multiplicity relation remains
unchanged for different numbers of simulations.

As shown in fig. 3a, to obtain an error of MED of less
than 10%, the 8bit and 12bit multipliers require about 50,000
iterations of Monte Carlo simulation, while the 16bit requires
500,000, which means hundreds of times the runtime of the
proposed error model. In fig. 3b, comparing with MED,
using Monte Carlo simulation to get MRED with acceptable



TABLE I: The Accuracy and Runtime Compared with Exhaustive Simulation of MED, MRED, MAED, and RMSed

Input
distribution

MED MRED MAED RMSed

Diff
/10−13

ex time/
m time(s)

runtime
ratio

Diff
/10−15

ex time/
m time(s)

runtime
ratio

Diff
/10−13

ex time/
m time(s)

runtime
ratio

Diff
/10−13

ex time/
m time(s)

runtime
ratio

8-bit array multiplier with 2-bit input-truncation, 3-bit partial-product-truncation and compensation

uniform 0 1.40 /
0.0012 1166.67 0 1.48 /

0.0031 477.42 0 1.47 /
0.088 16.70 0 1.45 /

0.0016 906.25

µ = 0
σ =100 4.09 1.51 /

0.0047 321.28 -0.059 1.57 /
0.0075 209.33 -3.41 1.61 /

0.34 4.74 -6.82 1.56 /
0.016 97.50

µ = 50
σ =200 8.6 1.5 /

0.0047 319.16 -0.247 1.6 /
0.0075 213.33 7.67 1.56 /

0.32 4.88 0.568 1.55 /
0.017 91.18

10-bit radix 4 booth multiplier with 3-bit input-truncation and compensation, 2-bit partial-product-truncation and compensation

uniform 0 45.16 /
0.0021 21504.76 0 46.14 /

0.0077 5992.21 0 45.21 /
0.66 68.50 0 44.89 /

0.0029 15479.31

µ = 0
σ =100 3.77 27.34 /

0.008 3417.50 26 47.84 /
0.025 1913.60 23.3 46.88 /

3.77 12.44 3.41 47.54 /
0.038 1251.05

µ = 50
σ =200 2.82 46.64 /

0.0087 5360.92 1.11 47.72 /
0.025 1908.80 -235 47.92 /

3.83 12.51 -5.68 49.69 /
0.036 1380.28

12-bit radix 8 booth multiplier with 1-bit input-truncation and compensation, 4-bit partial-product-truncation

uniform 0 377.84 /
0.018 20991.11 -141 388.10 /

0.087 4460.92 0 402.45 /
1.33 302.59 0 390.2 /

0.021 18580.95

µ = 0
σ =100 24.1 411.9 /

0.13 3168.46 -241 421.95 /
0.35 1205.57 1550 414.22 /

17.15 24.15 0.426 414.63 /
0.58 714.88

µ = 50
σ =200 75 407.36 /

0.13 3133.54 -17.3 419.75 /
0.31 1354.03 12000 426.53 /

17.28 24.68 -1.71 421.83 /
0.58 727.29

1 µ and σ are the mean and variance of Gaussian distribution. Diff means the difference between exhaustive result and the model result in scientific notation.
ex time/m time means the runtime of exhaustive simulation and the model.

accuracy needs more iterations and more runtime, up to 2,500
times slower than the error model. In fig. 3c, MAED has little
advantage over Monte Carlo simulations in terms of time due
to the complexity of the equation and limited space available
for optimization. In fig. 3d, For approximate multipliers with
similar approximate bit-width and multiplier bit-width, using
the proposed error model demonstrated a clear advantage in
the evaluation of RMSed. Considering a 12-bit multiplier with
an approximate bit-width of 7 and limiting the MRED of the
four error metrics to less than 10%, using the error model is on
average 120.85 times faster than the Monte Carlo simulation.
For the 8-bit multiplier with 7 approximate bits, the error of
MRED can be reduced to less than 10% until the simulation
time reaches 2549.8 times the error model.

In summary, the error model and Monte Carlo simulation
exhibit distinct characteristics when assessing various metrics
across differing bit-width configurations. Specifically, when
appraising MRED and MED, the proposed model con-
sistently demonstrates a pronounced advantage. Furthermore,
the error model emerges as the preferred choice across all
metrics, particularly in scenarios necessitating high precision
or in situations where a comprehensive understanding of the
interplay between iteration count and precision is lacking.

IV. ERROR MODEL VERIFICATION

The proposed model is utilized in the design space ex-
ploration [8] for a 3×3 convolution circuit to verify its
effectiveness. The convolution circuit consists of nine parallel
8-bit approximate multipliers and an accurate adder tree. To
showcase the universality of the error model, a Gaussian Blur
application is also presented here. It follows the same structure
as the MAC, except for the utilization of fixed coefficient
multipliers. All designs among the Pareto-optimal set are

described in Verilog HDL and synthesized using Synopsys’
Design Compiler tool at 28nm technology for confirming.

To get the precision of the convolution circuit, the error
computation method verified in [9] is employed. The proposed
model replaces the MSE modeling of individual components in
the algorithm. The mean squared error of the convolution can
be modeled as the sum of the MSEs of all approximate multi-
pliers. The hardware evaluation approach presented in [10]
is adopted. Similarly, the hardware modeling of individual
components is replaced with that proposed in this paper.

Next, the model is applied to the design space exploration
of a 3×3 convolution circuit. The Monte Carlo Tree Search
(MCTS) explained in [11] will be employed as the search tech-
nique. The optimization objectives are to minimize the power-
delay product (PDP) and area respectively. For the derivation
of errors in a single multiplier, a Monte Carlo simulation
method using 5000 sets of inputs is used except for the model
proposed for comparison. To guarantee reliability, the final
results undergo verification through Monte Carlo simulation
with 5 million sets of random numbers and synthesis using
Synopsys’ Design Compiler tool. The design space comprises
20 representative approximate multipliers, with a total design
space size of 794 billion. Fig. 4 displays the Pareto-optimal
set and the close solutions obtained after several iterations.
The figure illustrates that the method proposed in this paper
can generate Pareto-optimal sets of comparable quality to the
Monte Carlo method while being 10 times faster, which comes
from the runtime ratio of 5000 Monte Carlo simulations and
the proposed model when calculating the RMSed of 8-bit
approximate multipliers.

To demonstrate the practicality, the optimal values are
selected by iterating the algorithm under four accuracy con-
straints. The value closest to the constraints is chosen from the
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Fig. 3: The time ratio of the Monte Carlo simulation method to the proposed method and the errors in the form of MRED
for (a) MED, (b) MRED, (c) MAED and (d) RMSed.
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Fig. 4: The Pareto-optimal values using the proposed model
and Monte Carlo method for PDP-minimization and area-
minimization purposes along with close solutions separately.

set of Pareto-optimal values. Details are shown in Table. II.
For the sake of fairness, the exact copy employs an 8-bit fully
accurate multiplier, but rounds off the lower 7 bits before
entering the addition tree, in accordance with the approximate
MAC addition tree. The MRED of the PDP model error is
below 2.1%, while that of the model error of the area is
below 2.3‰. These results are consistent with the evaluation
in III-A2, and the errors fall within an acceptable range.
When the MSE is constrained to 1 × 107, the design space

TABLE II: The Optimal Designs for Different Constraints
regard to PDP and Area

MSE set
/107

MSE ex
/107

PSNR ex
/dB Synthesis Analytial

Model
PDP-optimal PDP/µW · ns

0 0 +∞ 856.96 /
1 0.98 33.45 176.02 173.05
2 2.01 30.34 131.06 131.00
6 5.98 25.61 74.28 73.02
10 9.98 23.38 50.50 52.94

Area-optimal Area/µm2

0 0 +∞ 2158.76 /
1 0.98 33.45 604.93 604.95
2 2.00 30.36 475.27 474.61
6 5.98 25.61 287.28 288.46
10 9.96 23.39 225.41 226.20

1 MSE set is the accuracy constraint. MSE ex and PSNR ex
are the exact value of the optimal design.

exploration yields an optimal design that achieves a 79.46%
reduction of PDP in comparison to the exact counterpart
when the optimal PDP is required. Similarly, the area can be
reduced by 71.98% when the optimal area is required. This
remarkable outcome is attributed to the high precision and
speed offered by the recommended model, which facilitates
the efficient utilization of redundancy while upholding the
requisite accuracy constraints.

To further demonstrate the extensibility of the error model,
the design space exploration methodology is applied to Gaus-



sian Blur. The chosen convolution kernel size is 3×3 with
8-bit precision. It is worth noting that Gaussian Blur uses
fixed coefficient multipliers, whereas the error model can be
adapted by changing the input distribution of the multipliers.
For instance, if the weight is 120, the input probability is set
to 1 at 120, and the probability of the other 255 numbers
is 0. As the hardware model in this paper cannot be applied
to the fixed coefficient multiplier, the synthesized results are
used instead. The 25 commonly used 8-bit grayscale maps
serve as a reference for obtaining another input distribution
of multipliers. The objectives are PDP optimization and area
optimization, with design accuracy limits of 20dB and 30dB,
respectively. The final results are shown in Fig. 5. It is evident
that when the PSNR reaches 30dB, the difference between
the approximate image and the actual image perceived by the
human eye is minimal. When limiting precision to 30 dB, the
design space exploration algorithm yielded an optimal design
with 68.59% less PDP and 56.21% less area compared to the
exact counterpart. Compared to a MAC composed of regular
multipliers, an exact fixed coefficient MAC is simpler and
therefore has less room for optimization. However, it is still
possible to achieve a satisfactory design with a good balance of
accuracy and hardware overhead using the proposed approach.

(a) Area = 951.05 µm2

PDP = 294.98 µW · ns
(b) PDP, 20.37dB

PDP = 34.32 µW · ns
(c) PDP, 30.00dB

PDP = 92.66 µW · ns

(d) Area, 20.37dB
Area = 221.89 µm2

(e) Area, 30.04dB
Area = 416.43 µm2

Fig. 5: Resulting images of generated optimal solutions im-
plementing Gaussian blur for different targets, where (a) is the
exact result.

V. CONCLUSION

This paper presents an analytical model tailored to con-
figurable approximate multipliers, which takes into account
input distribution while retaining full precision for the error
component. The proposed model offers adaptability, accom-
modating various approximate techniques. Through rigorous
mathematical derivations, we have established five distinct
quality metrics, namely, MED, MRED, MAED, RMSed,
and V arED, in addition to four hardware metrics, each
customized to suit different approximate techniques. In com-
parison to the Monte Carlo simulation method, our proposed

model demonstrates a remarkable reduction in runtime, with an
average decrease of 120.85, and in specific instances, as low as
2,500. This performance gain is particularly pronounced when
precision constraints are set at 10% or higher. To emphasize
the practical utility of our model, we apply it in the design
space exploration of a 3×3 convolution circuit and Gaussian
Blur, employing normal multipliers and fixed coefficient mul-
tipliers, respectively. Impressively, this utilization results in
a design achieving a substantial 79.46% reduction in Power-
Delay Product (PDP) and a 71.98% reduction in area when
compared to the accurate counterpart in Multiply-Accumulate
(MAC) operations. Additionally, in the context of Gaussian
Blur, it becomes feasible to reduce the PDP by 68.59% and
the area by 56.21% compared to the exact counterpart, while
still maintaining an accuracy level of 30dB. Furthermore, it
is worth noting that a similar Pareto-optimal set is generated,
but with a runtime that is ten times faster.
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